A deep dive into the polyglot microservices architecture powering real-time financial data processing at scale.
From market data feed to your screen in microseconds
%%{init: {'theme': 'dark', 'themeVariables': { 'primaryColor': '#00F0FF', 'primaryTextColor': '#fff', 'primaryBorderColor': '#00F0FF', 'lineColor': '#D83BD2', 'secondaryColor': '#1a0d2e', 'tertiaryColor': '#0f0618', 'background': '#1a0d2e', 'mainBkg': '#1e1035', 'nodeBorder': '#00F0FF', 'clusterBkg': '#1e1035', 'clusterBorder': '#3d2a5a', 'edgeLabelBackground': '#1a0d2e'}}}%%
flowchart LR
subgraph External["External Data Sources"]
DB[("Databento\nMarket Feed")]
NEWS[("News\nAPIs")]
end
subgraph Ingestion["Rust Ingestion Layer"]
RUST["Rust Engine\n< 1μs latency"]
PARSE["Protocol\nParser"]
end
subgraph Cache["In-Memory Cache"]
REDIS[("Redis Cluster\nPub/Sub")]
end
subgraph Realtime["Elixir/Phoenix Layer"]
PHOENIX["Phoenix\nChannels"]
PUBSUB["PubSub\nBroadcast"]
BEAM["BEAM VM\n10K+ conns"]
end
subgraph Client["Browser Runtime"]
WS["WebSocket\nClient"]
WASM["WebAssembly\nCompute"]
WEBGPU["WebGPU\nRenderer"]
end
subgraph AI["QENEX AI"]
ML["ML Models\nInference"]
SIGNAL["Signal\nGeneration"]
end
DB --> RUST
NEWS --> PARSE
RUST --> REDIS
PARSE --> REDIS
REDIS --> PHOENIX
PHOENIX --> PUBSUB
PUBSUB --> BEAM
BEAM --> WS
WS --> WASM
WASM --> WEBGPU
REDIS --> ML
ML --> SIGNAL
SIGNAL --> PHOENIX
style RUST fill:#D83BD2,stroke:#D83BD2,color:#fff
style REDIS fill:#D83BD2,stroke:#D83BD2,color:#fff
style PHOENIX fill:#44318D,stroke:#44318D,color:#fff
style BEAM fill:#44318D,stroke:#44318D,color:#fff
style WEBGPU fill:#00F0FF,stroke:#00F0FF,color:#000
style ML fill:#00F0FF,stroke:#00F0FF,color:#000
Purpose-built components working in harmony
Zero-copy parsing of market data protocols. Memory-safe by design with guaranteed thread safety. Processes millions of messages per second with sub-microsecond latency. No garbage collection pauses, ever.
Built on the battle-tested BEAM VM (Erlang). Native support for millions of concurrent WebSocket connections. Fault-tolerant supervision trees automatically recover from failures. Hot code upgrades without downtime.
Next-generation browser APIs for GPU-accelerated computing. WebAssembly modules compiled from Rust run at near-native speed. Complex financial calculations execute client-side, reducing server load to zero.
Real-time inference on market data streams. Sentiment analysis, anomaly detection, and pattern recognition. Models trained on petabytes of historical data, deployed at the edge for minimal latency.
Watch data traverse the stack in real-time
Connect to the real-time market data stream
// Connect to GPTFinancial WebSocket via Phoenix Channels import { Socket } from "phoenix"; const socket = new Socket("wss://gptfinancial.org/socket", { params: { token: "your_api_key" } }); socket.connect(); // Join the real-time market channel const channel = socket.channel("market:realtime", {}); channel.on("tick", (payload) => { const { symbol, price, volume, timestamp } = payload; // WebGPU-accelerated chart update webgpuRenderer.updateCandle({ symbol, price: parseFloat(price), volume: parseInt(volume), time: new Date(timestamp) }); }); channel.join() .receive("ok", () => console.log("Connected to market stream")) .receive("error", (err) => console.error("Connection failed", err));
Experience the power of our polyglot stack in your own applications.